
J .  Fluid Mech. (196S), vol. 34, part 2, pp .  229-239 

Printed in GT& Britain 

229 

The unsteady motion of a small sphere 
in a viscous liquid 

By J. R. OCKENDON 
St Catherine’s College, Oxford 

(Received 31 May 1967 and in revised form 1 April 1968) 

The drag experienced by a sphere moving with velocity dependent on a single 
time scale to in an unbounded viscous liquid is considered under the assumption 
that the Reynolds number is small. It is shown that, unless tois sufficiently large, 
an asymptotic expansion in the Reynolds number becomes invalid for large 
times. Moreover, when the expansion is valid for large times, the drag can differ 
considerably from that predicted by the unsteady Stokes equations. 

1. Introduction 
A knowledge of the drag experienced by a small sphere moving with variable 

velocity in a viscous liquid is important in the study of aerosol motion. In  par- 
ticular, in order to find the relaxation time taken for it sphere subjected to a 
constant force to attain a constant velocity, it is necessary to know the drag 
on the sphere for all times. Fuchs (1964) has calculated this relaxation time using 
the drag predicted by the unsteady Stokes equations in which the non-linear 
terms in the fluid acceleration are neglected. However, we shall see that, when 
the sphere’s velocity depends on a single time scale to, the solution of the unsteady 
Stokes equations is inaccurate for large times in the sense that the small Reynolds 
number perturbation of the solution does not tend to the correct steady-state 
solution found by Proudman & Pearson (1957). More generally, we shall find that 
any small Reynolds number expansion of the unsteady flow field will only be 
uniformly valid for all times provided to is sufficiently large. For such values of 
to, we shall show that the drag at all times can differ significantly from that 
predicted by the unsteady Stokes equations. 

We thus consider the motion produced when a sphere of radius a moves without 
rotation along the z-axis in ail unbounded, incompressible fluid of density p and 
kinematic viscosity v, a t  rest at  infinity. We suppose that at time t the sphere has 
a velocity UoU(t/to),  where Uo has the dimensions of velocity. In  addition, we 
shall assume U -+ U, as t -f co and that U(0)  = 0, impulsive motion being treated 
as a limit as to --f 0. Then, if we take axes moving with the centre of the sphere and 
make distances non-dimensional with a, velocities with U,, pressure with pUi /R  
and time with to, the Navier-Stokes equations become 
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where q and p denote the velocity and pressure of the fluid, R = Uoa/v and 
h = a2/vto. The boundary conditions are 

q = U(t)e ,  on r = 1, 

q = o  as r+m, 

(1.4) and q = o  at t = 0, 

where e3 is a unit vector along the x-axis. By symmetry, q may be derived from 
a streamfunction @ satisfying 

in spherical polar co-ordinates. 
We see that the form of an asymptotic solution of (1.1) for small R depends on 

the relative magnitudes of h and R. Although, for a given U ( t ) ,  the flow field is 
described in terms of r, t ,  t / h  and R, a result of Meyer (1967) concerning the 
asymptotic approximation of functions of r, t and R for large t and small R 
suggests that the asymptotic solution of (1.1) is only valid for all times if h is 
sufficiently small. As an example of the way in which the solution could depend 
on the magnitude of A, let us first consider the unsteady Stokes equations, 
obtained by putting R = 0 in (1.1). Then the exact solution for the drag (see, for 
example, Basset (1888)) may be written in non-dimensional form as 

Assuming further that dU/dt = O(t-7) (1.6) 

as t-tco, where y > +, (1.5) tends to 67rU,,[l+(A/nt)*+ ...) as t - tm .  Now an 
asymptotic expansion of the drag for large A, in powers of A-4, may be found after 
matching two expansions for the velocity field, using a layer of thickness A-4 on 
the sphere. This gives (1.5) in the reverse order, so that the first term is not a 
uniformly valid approximation for large h as t+m. However, an expansion of 
the drag for small A, in powers of Ah, again using matched expansions in regions 
r = O( 1) and r = O(h-t) ,  yields (1.5) and the first t.erm is now a valid first approxi- 
mation for all times. 

In 5 2 we shall consider the dependence of the solution of (1.1) on the magnitude 
of A, especially for large times, and in $ 3  the particular case h = O(R2).  The 
matching techniques to be used are similar to those employed by Riley (1966, 
1967) in the study of oscillatory viscous flow, where again the flow patterns 
depend crucially on the relative magnitudes of h and R. We shall retain assump- 
tion (1.6) in order to simplify the analysis, but this is not necessary. 

2. The dependence of the solution on the magnitude of h 
(a )  h of order unity or larger 

The situation when h is large is similar to that already described for the Stokes 
flow. To first order the flow consists of a shear layer of thickness A-4 on the sphere, 
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surrounded by an outer region of potential flow and the first three terms of the 
expansion for the drag are (1.5). 

When h = 0(1), we may proceed by iterating on the unsteady Stokes solution. 
Putting 

(2.1) $ = $0(r7t) + R $ 1 ( r 7  t, + * ' *  

we find that ( E . - A e )  E2$, = 0, (2.2) 

where 

3 = U(t)sinOcoso, __ - - U(t)sin26 on r = 1, ae ar 
with 

$/r2+ 0 at infinity and $ = 0 at  t = 0. Thus $o = fo(r ,  t )  sin2e, where 

and a2 = As. 

expansions are not necessary to determine $1, which satisfies 
Since the vorticity associated with $o is exponentially small as r -+a, matched 

(E. - h i )  E2$, = sin2 6 cos eFo(r, t ) ,  (2.4) 

where 

Thus we try $l = sin2 6 cos 6fl(r,  t ) ,  

where 

with f, = dfl/dr = 0 on r = 1 and fl/r2+ 0 as r -+ 00. In  fact, once $Jsin2 6 cos 6 
is known to be a function of r ,  the associated drag can be shown to vanish by 
symmetry. We shall, however, determine fl approximately in order to justify 
(2.5), since the results will be useful subsequently. 

Although the complicated form of fo makes the full solution of (2.6) rather 
involved, we can find the form of fl for large t by taking a small in the expression 
for f,. Since fo does not possess a useful uniformly valid expansion as a+ 0 for 
all r ,  we consider the cases r = O(1) and r = O(ta) separately. 

When r = O(l), f o  = (U,/4r) (3r2- l)+O(t-a) and so 

2 3  To= 9AU5/4a2 --+--- +o - ( r2 r3 L 5 )  (:) 7 

which shows that Fo tends to its steady flow value as t+m. Exactly as in t,he 
steady-flow case, if fl = O(l/a2) as a+O, the particular integral of (2.6) for 
r = O( 1)  which satisfies the boundary conditions on r = 1 grows like 

- 3h 0: r2/  1 6a2 

as r + 00. Also any complementary function which satisfies the boundary con- 
ditions grows at least as fast as r3. 
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Next, if r = O(t i ) ,  then 

and so 
fo= ;$ { t -T( ; )  At 4 exp{-hr2/4t}- 

Thus, after some algebra, 

and so 

3’ - -a[-erfc[5(t) 3u2 3 r h 4  ]+(z) h i 3  (;+2t)exp{-hr2/4t}]+O~) hr (2.9) O -  2 r2 

F - - -__ 3hU& (1+,+,)exp{-i)+O(a), 3 3 
O -  2 (2.10) 

where F = ar = O(1). Now the solution of 

which approaches zero as F-t 00 is 

where A ,  and A ,  are arbitrary constants. This solution can only be O ( p )  as 
F - t O  if A ,  = - 3A, = - 9hU&/2a4, in which case it tends to - 3hUzr2/16a2 as 
F+O. In  view of the behaviour of f l  when r = 0(1), this is the correct choice for 
A ,  and A ,  and thus the solution for?, for small a when r = O( 1) is 

3h u: - - r z + - - - + - - T ) + ~ ( A ) ,  3 r 1 1  1 

~1=m( 2 2 2r 2r a 
(2.13) 

This is exactly the Laplace transform of the particular integral of the non- 
singular perturbation of the steady Stokes solution. As previously mentioned, 
the symmetry of $, causes the O ( R )  contribution to  the drag on the sphere to 
vanish as t+ 00. Consequently h must be smaller than O( 1) as R -+ 0 for the asymp- 
totic expansion of $ for small R to be uniformly valid as t --f m. 

(b)  h = O(R) 

For arbitrary small h the form of the asymptotic expansion for small R is not 
particularly simple, but the case h = O(R) can be treated fairly easily. Guided 
by the results for the unsteady Stokes equations, when h = K ~ R  we try inner and 
outer expansions of the form 

$inner = $&, t )  + R W r ,  t )  + R$2(r, t )  + . . ., 
$outer = R-&$(O)(r‘, t )  + $(l)(r’, t )  + . . ., 

(2.14) 

(2.15) 
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where r’ = Rk. The time t then only appears as a parameter in the inner equa- 
tions and the first few terms in the expansions for II. can be written down a t  

= go sin2 8, (2.16) once. We find 

where go = tU(t)(3r- [l/rl); 

= g(0) sin2 8, 

and $1 = g1 sin2 8, (2.18) 

where 

Thus qV1) satisfies 

where E‘2 denotes E2 with r replaced by r’, with $(1)/r’2+0 as r’+oo, and, by 
matching, $(l)-+ $cx1 Dr‘ sin2 8 as r’+ 0. The complementary function of (2.19) 
satisfying both these conditions is the inverse transform of 

1 3 0  1 
- [ -- - (1 + 3) exp - cxlr’} sin28, 
2 air' 

but the particular integral is only easily written down for large times, under 
assumption (1.6). Then may be approximated for small a, and all r’ by 
replacing by UJs in (2.17), and (2.19) reduces to (2.11) with slight changes in 
notation. We may therefore conclude that the only particular integral which 
satisfies the boundary conditions at  infinity and is o(r’) as r‘ -+ 0 tends to 

-~U~r’2sin28cosB+O(t-g) 

as r‘ + 0 for large t and thus dominates the complementary function. 
Hence $2, which satisfies 

3K1 u’(t) 
E47,h2 = -7 sin2 8 + sin2 8 cos BGo(r, t ) ,  (2.20) 

where Go denotes Fa with fa replaced by go, with qk2 = 

match the inverse transform of 
= 0 on r = 1, must 

3K1 U2 
- a 2  r sin2 8 cos 8 + O(a;l) 

16a; 
as r + 00 for small 01~. Thus 

r z - -  + -- - +- sin2 Bcos8 + O(a i l )  (2.21) 
3r “ I  $z=-,[ 2 2 2r 2r2 

- 3v 

as cxl -+ 0. 
As in the previous section, the symmetry of q2 means there is no O(R) term in 

the drag on the sphere as t + 00. The two-term expansion for the drag calculated 
from (2.16) and (2.18) gives the first two terms in (1.5), with h replaced by K ~ R .  
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To obtain the third term it would have been necessary to calculate q2 correct 
to O(1) as crl+O. 

In summary7 therefore, h must be smaller than O(R) before a perturbation 
solution for small R is valid as t -f co. We shall see in the next section that a uni- 
formly va,lid expansion is obtained when h = O(R2). 

3. The case h = O(R2) 
When h = K R ~  we try an inner expansion of the form 

$ = $o(r, t)  + WAr, t)  + . . . , (3.1) 

as this is then the form of the expansion both for steady flow and for unsteady 
Stokes flow. Again the time only appears as a parameter in the inner solution 
and $o = t U ( t )  (3r - r-l) sin2 8. Also which satisfies the same equation as it 
would in steady flow, differs from 

3[U(t)I2 ( 3r 1 1 1 ) 
r2 - - + -- - + - sin28 cos 8 

16 2 2 2r 2r2 
-~ 

by a complementary function of E431r, = 0 which vanishes together with its 
derivative on r = 1. 

The form of $o suggests an outer expansion of the form 

q = Rq(O)(r*,t)+ ..., 
p = R2p(0)(r*, t )  + . . . , 
$ = z$-(o)(r*,t)+..., 

1 

where r* = Rr. Then 

where q ( O )  vanishes as r*+co and matches the first-order inner solution as 
r* + 0. We adopt Childress's (1964) device of assuming that this inner boundary 
condition is satisfied if q ( O )  and p(O) satisfy 

K---  aq(o) U(t)- aqn = -V*p(o)+V*2q(0)+6nU(t)6(r*)e3, V*.q(O)= 0, (3.6) 
at az* 

everywhere. 
The Fourier transforms of q ( O )  and p(O) are defined by 

Q(0) = {/Irn q(O)exp{-ik.r*}dr*, P O )  = //Im p(O)exp{ -ik.r*)dr*, 
-03 - w  
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Hence Po) = - 6nik3 U(t)/k2 
and so, using ( 1 . 4 ) )  

(3.8) 

where K Z ' ( t )  = U(t).  Moreover, provided U approaches U, algebraically as 
t+m, it can be shown that Q(O) tends to 

as t+co for k =t= 0. Since Q(O) is bounded as t+co when k = 0, it follows that 
q ( O ) ,  as given by 

+ ik3(Z(t) - 2(r ) )  + i k .  r* (O) - -"--/:U(7)d~Jl/~ exp( -___ k2(t - r )  ' - 4Kn2 -m K 

tends t o  its expected steady value as t -+ co, namely the velocity associated with 
a streamfunction f0) = $( 1 + cos 8) (1 - exp { - +U,[r* - z*]}). It is shown in 
appendix A that the streamfunction q0) is then given by 

(3.10) 

where rT2 = r*2+ 2z*(Z(t) - z(7)) + (Z(t) - Z ( T ) ) ~  and p is a dummy variable of 
integration. 

$(O) must be expanded in 
powers of R, having first put r* = Rr.  In appendix B it is shown that 

In  order to carry out the matching to determine 

3U(t)rsin28 
4 

@ O ) =  - R + { - &( U(t) )2r2  sin28cos 8 

tau d7 +- r2 sin2 8[ - (;)& / -___ 
2 0 d7 (t-7)& 

where 

T = t - T ,  ho( Y )  = exp { - K P ~ Y ~ / ~ T }  - exp { - K Y ~ / ~ T ) .  

Thus matching requires that the complementary function occurring in should 
be of the form &H(t) (r2- &-+ [1/2r])  sin2 8, where H ( t )  denotes the term in square 
brackets in (3.11). 

The next term in the asymptotic expansion for zj? can be calculated at  once by 
using Proudman & Pearson's results for the steady case. The equation for the 
third term in the inner expansion for y5- is modified only by the presence of a 

Y = Z ( t )  - Z(7) and 
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term Ki?/at (E2$,). Now the particular integral corresponding to this term is 
proportional t o  1.3 sin2 8d U/dt.  Hence the structure of the third term in the inner 
expansion for $ is unaltered. Moreover there still cannot be terms of O(1og R)  in 
the outer expansion. If there were, the corresponding pressure and velocity 
would satisfy (3.5) everywhere since the force on the sphere contains no R log R 
terms. Any such solution of (3.5) which is zero a t  infinity and a t  t = 0 vanishes 

04 

0 3  

0 1  

1 2 3 4 5 6 7 
t 

FIGURE 1. The functions H ( t )  and H,(t) when U = 1 - 1/(1 + t ) 2 ,  K = i. 

identically. Therefore we may still infer, as in (3.59) of Proudman & Pearson’s 
paper, that the third term in the inner expansion for $ is 

- 2![ U(t)]3R2 log R(ir2 - $r + [ 1/4r]) sin2 8 

and hence that the non-dimensional drag is 

677[ U ( t )  - R H  ( t )  + &[ U(t)l3X2 log R + . . . ] . (3.12) 

I n  view of t’he comments made after (3.8)) this expression does tend to the 
correct steady-state value when U+U, algebraically. The first term in H ( t ) ,  
denoted by H,(t), then tends to zero, while the second approaches - $ U i .  This 
is demonstrated in figure 1, where H ( t )  and H,(t) are compared for the case 
U ( t )  = 1 - I/(  1 +t)’, K = 4’ 
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during the preparation of this paper and to the Central Electricity Generating 
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Appendix A 
Let us first consider d o ) ,  the velocity component in the x-direction. From (3.9) 

exp{ - w2k2+ i(k,x* + k2y* + k3c)]g dk]d7,  
-m 

(A 1)  

where w2 = (t - T)/K and g = x* + Z ( t )  - 2(r) .  After rotating the axes to a system 
k’ in which (x*, y*, 6) lies on the k; axis, the integral in curly brackets can be 
written as 

a 2  - 27r ~ s O0 / exp { - w2kt2 + ik‘rf cos $1 sin $ d$dk‘ 
ax*ac 0 0 

=-4T--- 
j m  ax*a< k‘rf 

2n+ 82 1 - _. __ 1 
w ax*ac 

sink’r? 
~ exp { - w2kf2}dk’ 

exp { - - - 

exp { - r72~2//4w2)dp]. (A 2) 

The y and z velocity components may be treated similarly. 
We may prove by direct differentiation that, if a streamfunction 

sin2 O/o‘N(r*, r)d7 gives a velocity M(r*,  x*, 7) d7, so” 
then the streamfunction 

Now the x velocity component associated with the streamfunction 

Hence, from (A2),  (3.10) does indeed give the velocity (3.9). 

Appendix B 

t 
Let us assume that Z(0) = 0 and that U ( t )  is bounded and continuous for 

0. If we make the substitutions indicated after (3.11), so that 

T = KY/U(t)+O(Y2) as Y-tO, 
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and also put Q( Y )  = Y 2  + 2Rr cos BY + R2r2, then 

3R2r2sin20 K 4 lh(Y)dpdY 
(n) ~ o z ( t ) J o  T*Q( Y )  ’ 

+(O) = 
2 

where h( Y )  = exp { - K P ~ & (  Y)/4T)-  exp { - KQ( Y) /4T) .  

When Y > 0,  

where h,( Y )  = O( Y-n+l) as Y .+ 0,  and 

h,( Y )  = exp { - .p2 Y2/4T} - exp { - K Y2/4T}. 

4=j 6 T*&(Y)’ 

Thus we first consider 

(B 2) 
zw h( Y )  d Y 

where 6 is an arbitrary positive number. Now 

for small 6, while 

since U(0)  = 0. Thus 

= ~ + b o + 0 ( 6 f )  
z(t) h,( Y )dY  

for small 6, where a, = ([ U(t)]g/ia/c$} (1 -p2)  and 

Similarly, 

U 
I - --O+bo+0(63,R). 
- 64 

and so, as R-tO, 

We next consider 
h( Y)d  Y 

I2 = j o  T$&( Y )  ’ 
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as R-t 0, where ah = S(p’ -p) and 

Next, 

4 exp { - 2pRr( 1 + cos O)} 
Rr 7 

arid so 

If we finally let 6 -+ 0 (B 10) 

and so, for small R, 

3R2r2 sin2 8 U(t )  [U(t)I2 cos 8 
@O’ = ____ __- 

2 [2Rr 8 

which is (3.11). 
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